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Abstract

We consider the region of closed time-like curves (CTCs) in three-dimensional flat Lorentz
space—times. The interest in this global geometrical feature goes beyond the purely mathematical
one. Such space—-times are lower-dimensional toy models of sourceless Einstein gravity or cosmol-
ogy. In three dimensions all such space—times are known: they are quotients of Minkowski space
by a suitable group of Poincaré isometries. The presence of CTCs would indicate the possibility of
“time machines”, aregion of space—time where an object can travel along in time and revisit the same
event. Such space-times also provide a testbed for the chronology protection conjecture, which sug-
gests that quantum back reaction would eliminate CTCs. In particular, our interest in this note will be
to find the set free of CTCs fd@/(y), whereE is modeled on Minkowski space apds a Poincaré
transformation. We describe the set free of CTCs wheargehyperbolic, parabolic, and elliptic.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let E denote three-dimensionk&linkowski spaceThis is an affine space with transla-
tions inR21, the vector space equipped with the standard indefinite bilinear Rirm)
of signature(2, 1). (Sincek is flat and geodesically complete, the reader may ideffiify
with its set of translations without any major difficulties arising.) We look at flat Lorentz
manifolds, which are quotients of an open subsetf E by a groupl” of affine Lorentzian
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isometries that acts properly discontinuously on that subset. Such manifaldsmherit a
local causal structure froi.

Let X/I" be a flat Lorentz manifold. Aime-likevector is a vector € R>! such that
B(v,v) < 0. A time-like curvein X/I" is aC? pathc : [0,1] — X/I" whose tangent
vectors are all time-like; we say thais closedif ¢(0) = ¢(1). The purpose of this note is
to lay the groundwork for understanding regions free of closed time-like curves (CTCs) in
a Lorentz space-time.

The CTC regionof a space—time is the set of all points which lie on some CTC and the
CTC-free regiors the complement of this space. Suppdsacts properly discontinuously
on some subset c E. Denote by p] the image ofp in X/I" under projection. We wish
to determine the set of all such that p] lies in the CTC region o/ I".

We first note the following basic lemma.

Lemmall. Letl"andX C E be as above. Lep € X be a point such thag(p) — pis a
time-like vectorfor somey € I', and the line segment starting at p and ending@) lies
entirely in X. Therjp] € X/I" lies on a smooth CTC

This lemma is well known, but we provide a proof for completeness.

Proof. Letc : R — E be a continuous and piecewise linear path through each pbipj,
defined by the following:

e =Y + ¢ = DA () — Y (p)),

where [] denotes the largest integer not greater tharhe pathr is of the clasg> except
at the integers. We describe a new path neai0 and then apply the same procedure at all
integer values of. For some smak > 0, define

&) = do. () (p+1t(p — y~H(p)) + uo. (O (p + t(/(p) — p)),

wheredg (1) andug () areC* functions such that

1 fort<0, 0 for <0,
doc(t) = and uo.(t) =
0 fort>e, 1 forr>e

The patlt is C*° and agrees with the patffor + < 0 andr > €. The pathe can be extended

to aC> path through each point’(p). We can assume that—1(p) — y"(n) is a future
pointing time-like vector. The sum of two future pointing time-like vectors is another future
pointing time-like vector. Thereforé,is a smooth time-like curve which goes through each

pointy"(p). O

Corollary 1.2. Supposel” acts properly discontinuously di. Then[p] is in the CTC
region of &/ " if and only ify(p) — p is time-like for somey € I.

The vectory(p) — p is called thedisplacement vectdor p.
In this note we will mainly consider” = (y), wherey is an affine Lorentzian isometry,
that is, an element of thPoincaré group Note that the cyclic groug™ acts properly
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discontinuously on all o if and only if y admits no fixed points. We will examine both
the fixed point case—in other words, wheiis an element of theorentz group—and the
fixed point-free case.

2. |lsometries

Let Isom(E) denote the group of affine isometriesifthat is the Poincaré group. Choos-
ing an originO, we may write the action of an isometyye Isom(E) as

Y(p) =0+g(p—0)+v, 1)

whereg € O(2,1) is called itslinear partandv € R%! is called itstranslational part
(Typically, we shall omit0, which can be taken to be the point whose coordinates are all
zero.)

Denote the Lorentzian inner product on the vector space of transl@fohby B(-, -):

X u
Bl|ly|.|]v = XU+ Yyv — zw.
z w

It is invariant under the action due to any element 62Q).

The union of the sets of time-like vectors and non-zero light-like vectors divides into two
connected components, one of which is caflgdre directecand one callegast directed
It is common to choose the connected component where the third coordinate is positive
to be the future direction. Such a choice is calletihge-orientationon E. We say that a
setX C E is future (resp. pastcompleteif given a pointp € X every future (resp. past)
directed ray starting gi remains inX.

We will restrict our examination to the identity compone&ntC Isom(E), consisting
of orientation and time-orientation preserving isometries. This is a subgroup @ $0
which has index 2.

The conjugacy classes of element&are identified by their trace. Further, anon-identity
elementg € G is called:

e hyperbolicif tr (g) > 3,
e paraboliciftr(g) = 3 and
o ellipticiftr(g) < 3.

We say that an affine transformationhgperbolic parabolic or elliptic if its linear
part is hyperbolic, parabolic, or elliptic, respectively. Conjugacy classes of hyperbolic and
parabolic affine transformations are determined by the trace of the linear part and what we
will call the signed Lorentzian lengtiThis invariant, due to Margulifs,7], measures the
Lorentzian length of the closed geodesic determined by the isometry; more on this in the
following section.

For a given transformatiop, E splits into three regions, according to the causal character
of the displacement vecto«(p) — p, for p € E:
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o thetime-like regionfor the action ofy onE:

Ty) ={p € EB(¥(p) — p, ¥(p) — p) <O}

o thelight-like regionfor the action ofy:

L) ={p €E|B(y(p) — p,v(p) —p) =0}

e thespace-like regioffior y:

S(y) ={p € E[B(¥(p) — p. v(p) — p) > O}

Supposel” c Isom(EE) acts properly discontinuously on the maximal et E; we
denote byJ(I") the set of pointg € X such that p] is in the CTC region o /I". If I" acts
freely and properly discontinuously @) then

() = |JTw.

yel’

The region whose quotient is free of CTCs is denotedt). If I" acts freely and properly
discontinuously ori, then

FI) = SW U L.

yell

2.1. Conjugation

An isometry may be conjugated by an element o &IR), in order to facilitate explicit
calculations. For instance, given a hyperbglie G, there exist$i € GL(3, R) such that
hgh~1 is a diagonal matrix.

Conjugation of an isometry by a linear map corresponds to a change of bdsis in
Conjugation by a pure translation corresponds to changing the origin.

Conjugation of an isometry by elements of the Poincaré group is more restrictive but has
real physical meaning. Conjugation by an element of&5®) corresponds to changing to an
observer in a different inertial reference frame. Conjugation by a translation corresponds to
changing to an observer at a different space—time locationpfiheiple of special relativity
requires the invariance of physical laws under a change of location and inertial reference.

The relevant invariants in our Lorentzian space—times, such as the Lorentzian inner prod-
uct and signed Lorentzian length, are invariant after conjugation by an element of the
Poincaré group. In particular, even though the fornildfdepends on the choice of origin,
the signed Lorentzian length does not depend on the choice of origin.

3. Hyperbalic transformations

Let y € Isom(E) be a hyperbolic transformation with linear part Then g admits
three eigenvectorss~(g), x%(g), X (g) with eigenvalues\(g) < 1 < A(g)~L, respec-
tively. The eigenvectors®(g) are null and can be chosen so that they are future directed
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andB(x~(g), x*(g)) = —1. Then we may choose’(g) to be the unique 1-eigenvector
satisfying:

e itis unit-space-like, i.eB(x%(g), x%(g)) = 1;
e {x (), x"(g),x%g)} is aright-handed basis f&t>?.

Thesigned Lorentzian lengtbf y is

a(y) = B(p) — p.x°(g)),

wherep € E is arbitrary (i.e«a(y) does not depend on the choicemf Every hyperbolic
transformatiory gives rise to a unique invariant li®, C I, which is parallel to0(g). If
qgeCy:

V@) = g+ a(x°(g),

thusa(y) measures the signed Lorentzian lengthCof/ (y). The curveC, /(y) is called
theunique closed geodesiic E/(y), that isC, /(y) is the image of a simple closed curve
[0, 1] — E such that/(¢) is constant on [01], wherec’(0) is thought of as a right-hand
limit and ¢’ (1) is thought of as a left-hand limit.
As trace identifies conjugacy classes of elements i(2SD, the trace of the linear part
and the value af identify conjugacy classes of hyperbolic isometries in I§BnConjugate
y by the change of basis matrix{ (g)x* (g)x%(g)] (an element of GL3, R), not SQ2, 1)),
so that its linear part is diagonal. Next, conjugate by an appropriate translation, so that the
origin lies onC,,.
Write the pointp € E in terms of the new basis and origin:

P =p-X" (&) + px"(g) + pox°(e).
We may write the conjugate transformation as follows:

- r(Q) 0 0| pr- 0 LMo p-
pr || 0 2@t Of|pr|+]| O |=|retpy
Do 0 0 1 Do a(y) po + a(y)

The causal character of the displacement vector is determined by the following calculation:
B(¥(p)—p. ¥(p)—p) = 2B (2), X ()M —D(h(e)"" = Dp_py +a()’.
Thus points irf(y), i.e. points projected onto CTCs, satisfy the following inequality:

—a(y)?
< 1 .
21- M) (e -1
Observe that the right-hand side is negative.

P-D+ 73

3.1. Hyperbolic transformations with fixed points

Suppose that admits a fixed point; equivalentlg,, is pointwise fixed ane(y) = 0. Set,

B, = {p—-x"(») + px* @) + pox’(W|p-ps < O}
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Fig. 1. A cross-section for hyperbolic transformations.

Thenp solves(2)ifand only if p € B,,. This region divides into two connected components,
bounded byC(y), which in turn is composed of the so-calledstabléstableplanest® (y):
these are the planes containiig and parallel toct(g).

The closure of the two remaining component&of

G ={p- X" + pxt M + pox’WIp—. py = 0},
G, ={p-x" M + pxT @) + poxX’W|p-. p+ <O},

form F(y), seeFig. L The seU;f is future complete.

Note thatF(y) = F(3"), for everyn, sincex™ (y") = x*(y). Thus we have the following
proposition.

Proposition 3.1. Lety be a hyperbolic transformation with fixed points. Then
Fy) =G UG, \ Cy,

and

The interior ofg;f is a maximal connected openinvariant CTC-free region of on
which (y) acts properly discontinuously. The quoti@jj/(y) is called Misner space and

is a Lorentz space—time which is future complete and diffeomorpfié to S*.
The interior ofG,, yields an analogoypast complete space—time

3.2. Hyperbolic transformations without fixed points

DefineB,, G/, g, as above. Solutions {@) now consist of two components which are
strictly contained in3,.. They are bounded by hyperbolic sheets formil{g), which are
asymptotic to the plane&® (y).
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Theorem 3.2. Lety € Isom(EE) be a hyperbolic isometry without fixed pointsen
T{y) =By,
and the CTC region dE/(y) is B, /{y). Furthermore
Flyn=6,ug,.
The regionﬁ;f and g, are future complete and past completespectively. All closed
curves ing;f/(y) andg , /(y) are space-like

Proof. Note that the linear part of” is g" soA(g") = (A(g)", buta(y™) = na(y).
Consider the right-hand side (). We find

_ ny2
lim O )
n—o00 2(1 — A(g")(A(g") -1
Therefore, the hyperbolic sheels)”) approachE® (), sinceE*(y") = E*(y). O

In contrast to hyperbolic transformations with fixed points, the maximal connected open
subset offt on which(y) acts properly discontinuously is all & The quotienit/(y) is a
Lorentz space—time which is future complete, past complete, and diffeomoritfcds?,
which Grant[5] identified as representing the complement of two straight moving cosmic
strings which do not intersect.

Now that we understand the CTC regions for a group generated by a single hyperbolic
transformation, we can start to look at more complicated groups. Here is an interesting
example, where the CTC region consists of alEof

Example 2.3 (F(I) = ¥). Suppose thay; andy» are hyperbolic transformations such
that:

e the invariant line<”,,, C,, are distinct,
e the linear parts admit the same eigenvectors, and
e the groupl” = (y1, y2) acts freely and properly discontinuously Bn

Note that there are such groups. One such example is the group generated by the trans-
formations

(1 0 o0 1
3 NG
yi(x) = 0 2 T |[x+]0 and
0 _£5 § 0
L 2 2
1 0 0 5
7 3/5 1
y2(x) =10 > Ty |xt 7
0o 35 7 1
L 2 2
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Fig. 2. A cross-section d8,,; C = C,,.

These transformations admit distinct invariant lines which are both parallel to the vector

1
0
0

(In fact,E/(y1, y») is a 3-torus. There is a normal subgrdiifZ?2 of pure translations and
the linear parts preserve tHig-lattice.)
To study7([I), it is enough to look at a single cross-section parallel to

(X~ (g0, X" (1)) = (X (g2), X" (g2)).

Fig. 3. A cross-section a8, andB,,; C1 = Cy,.
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N
)

(Gl

i - i . s << C: = i it
Fig. 4. A cross-section dﬁy,lyzyl,, 0<i <3, andB,,; C; Cy,1 Lyt

Conjugate invariant lines are obtained as follows:

C 1 =yC,..
vyt = Vit

Suppose thaj € gjl u g;z. The point representing the invariant Iidgfyzy{n approaches

the asymptote representing eitli&r (y1) or E~ (y1) as seenifrigs. 2—4 So in our example,
every pointg lies in By’l'mf" for a large enough. The other cases are treated in the same
manner, showing that evegylies in B, for somey € I'.

Thus, the CTC region dE/I" is the entire space.

4. Parabolic transformations

In the linear groupG, all parabolic transformations are conjugate to each other. The
conjugacy classes of affine parabolic transformations in (&)rare described ifil]. In
particular, the invarian&, which is defined for hyperbolic transformations only, can be
generalized to parabolic transformations.

4.1. Parabolic transformations with fixed points

Let p € Isom(EE) be a parabolic isometry with a fixed point. Equivalengyadmits a
pointwise fixed light-like line, which is parallel to the unique (fixed) eigendirectiop’'ef
linear part.

For simplicity, identify p with p’s linear part inG—this may be achieved by choosing
an origin0 in the fixed point set op. (We will omit O in the rest of this discussion.) Thys
admits a fixed eigendirection of light-like vectors. Choose one such vector which is future
pointing and call ix°(p).
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Letx%(p)L denote its Lorentz-orthogonal planelk¥-1, that is, the set of vectors whose
Lorentz inner product witk®(p) vanishes. Note tha(p)* is tangent to the light cone and
containsRx?(p), the line spanned by®(p). Every vector irk%(p)~* is either light-like (if
and only if it is parallel tax%(p)) or space-like; in particulax®(p)- contains no time-like
vectors.

Similarly, to the hyperbolic case, I&t, x2 be a pair of vectors such that:

e x!lies inx%p)* and is unit-space-like;
e x2is light-like, future pointing and Lorentz-orthogonalxd, but not parallel to<°(p);
e {x%p), x, x?} is a positively oriented basis.

Then relative to this basis, every power®tan be written as an upper-triangular matrix
with 1’s on the diagonal:

In particular, for everyp € E each displacement vectpf (p) — p lies inx%(o)*. (More
generally, ify € Isom(E) admits fixed points, then the displacement vectors liip) .
We will use this fact again in the elliptic case.) Thus the displacement vector is never
time-like. The displacement vector is light-like if and onlyzife x°(p)* and, of course,
vanishes if and only ip is fixed by p.
Thus,

S(p) = 8" =E=x2)", Lo = L") =X
We define

E, =E—Rx’(p),

and we have shown the following proposition.
Proposition 4.1. Let p be a parabolic isometry with fixed points. Then

Fp)) =E, and T({y)) =0.

That is the CTC region off,/(p) is empty. The space-like regidi{p) divides into two
components separated by the light-like regitp) = x°(p)+ — Rx%(p).

4.2. Parabolic transformations with no fixed points

The situation changes dramatically for parabolic transformations without fixed points.



404 V. Charette et al./Journal of Geometry and Physics 46 (2003) 394-408

Recall that all linear parabolics are conjugate to each other. Chosiseh that

X2, xt X% = 1| ~

[ (@)
Sie
o

SR S

L V2 L V2.
Choose an origit® and denote the coordinates of a painin the {x°(p), x!, x?} basis as
follows:
po
P=1|nm
p2

We may further conjugate the parabolic isometry so that its translational part is parallel to
x2; then the transformation may be written as

1 V2 1 Po 0
pep)=|0 1 V2||p|+]|0]. )
0 O 1 P2 T

The inner product in this basis is given by

B(p., 9) = —pog2 + p191 — p2q0.

whereqo, g1, g2 are the coordinates gfin the new basis. A poing is in 7(p;) if
P53 — T(v2p1+ p2) < 0.

More explicitly,

b1~ P3— 2 P35 — w2
«/E‘L’ \/E‘L’

We see thatC(p;) is a parabolic sheet boundiriffp.). Let us examine the case where
7 > 0. Suppose that € L(p;) U T(p;). The set of future pointing, non-space-like vectors
is convex. Therefore,

if >0, p1< if <O. 4)

n+1

P p) — p = (0 P) — pe(p)) + (0e(P) — P) = g1 (P) — P) + (pe(P) — P)

is a future pointing time-like vector, since each term is either a future pointing light-like

vector or a future pointing time-like vector and all vectors are not parallel.
The same statement holds wher: 0, substituting the term “past” for “future”.

Lemma4.2. Lett # 0;thenT(p") C T(p'+1) forall n > 1.
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We will now show by direct calculation that the parabolic shéet?) is described by
the equation

p3 — 2

p1= N2

whereg(n) increases as fast ad. Notice that this sheet is just a translatefp.) in the
x1 direction by the amount¢(n).
We can show the following by induction;

nN2p1+nPpy+ T Y0P
AP = | Ep 4 VE b |- ©

nt

— (), ®)

We get an equation describiuyy p?) by solving
B(o7 (p) = p, P7(p) — p) =0,
and we obtain
n—1 n—1 n—1 2
n® 2tp1=n2p§+ntp2 (—nz—i—ZZi)—tz nZiz—(Zt) .
i=1 i=1 i=1

We note that-n?+2Y " 'i = —nandthat & 7" i? = n(n—1)(22—1), so the following
holds:

pi—w2 t®-1

="/ 1242

Theorem 4.3. Letp € Isom(E) be a parabolic isometry without fixed points. Then

T{y) = E,
and the CTC region dE/(y) is the entire space

Example4.4. Supposég,},>0 C G isasequence of hyperbolicisometries with a common
fixed point0, converging to a parabolic elementéh This happens, for instance, by letting
gn = h"gh™, whereg is hyperbolic and: is an arbitrary element af. Then,

T(gn) — T(p) as g, — p.

Indeed, ag, — p, the stable and unstable planesgpfboth approach the plan€(p)*.
(Recall thatx%(p)* is tangent to the light cone at the origin and contdx8(p).) Thus
T(y,) approaches the empty set.

Now consider a sequence of hyperbolic transformatignk, >0 approaching a parabolic
transformationp, without fixed points. The region®(y,) still approach the empty set.
However,7{p) = E.
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5. Elliptic transformations

In G, all elliptic elements are conjugate to an element of the form
cosf sing O
Y9=| —sind cosd O |. (7)
0 1

The signed Lorentzian length invariamtannot be generalized in any coherent manner to
elliptic elements. We will first consider elliptic transformations with fixed points and then
without fixed points.

5.1. Elliptic transformations with fixed points

After choosing an origi in the fixed point set, we let
X
p=1vy
z

so that the transformation can be writtenygs A fixed eigenvector for this transformation
is

X0 (W) =

= O O

and the fixed point set fagy consists of the liN&x%(y).
If 6 is a rational multiple of 2, then the groupyy) acts freely and properly discontinu-
ously on the complement of its fixed point set

Ey, = E — RX°().

Recall that sincex%(y) is fixed by v, every displacement vector lies in the Lorentz-
orthogonal plane ok%(y). This is thexy-plane, which is space-like. Thus we have the
following proposition.

Proposition 5.1. Suppose’ is an elliptic isometry with fixed pointand thaty is a rotation
of a rational multiple o2z about its line of fixed points. Then

F((Yo)) =Ey, and T((Yg)) = 0.
That is the CTC region oE,, /(1) is empty

Spaces of the typ&,,/(1g) can be identified with special cases of space—times that
represent (spinless) particles in{2)-dimensional gravity. Such spaces have been described
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by Deser et al[3] (see alsd9] and references cited there). The direct metric product of
such a space with a space-like line is known as a cosmic string.

5.2. Elliptic transformations without fixed points

As in the parabolic case, the situation changes dramatically for elliptic transformations
without fixed points. Every elliptic transformation is conjugate to a transformation

cosf sing O x 0
Yo (p)=| —sind cos® O ||y |+]|O0], (8)
0 1 z t

which we will write asys. The group(y) acts properly discontinuously on all B&f

Theorem 5.2. Lety € Isom(E) be an elliptic isometry without fixed points. Then

Ty) =E,
and the CTC region di/(v) is the entire space

Proof. Note that

coskd sinkd O X
Yy =| —sinkd coskd O y|+]0[,
0 1 z kt

so that the length (equivalent to the underlying topology) of the projectigii@f — p onto
the (x, y)-plane is bounded by|2? + y2||. However, the projection af(p) — p onto the
z-axis is unbounded @ — oo. Thus, for a sufficiently large powét, depending on the
distance fronp to thez-axis, the vecto*(p) — p is time-like. a

6. Futuredirections (pun intended)

In a future note, we will look for CTCsiX/I", whereX C E andI” is more complicated.
Some examples are given below.

For the caseX = E and freerl’, we callE/I" a Margulis space—timeTheorem 4.3
has an interesting and immediate consequence for Margulis space—tirfi§s Ntargulis
space-times with non-cyclic free fundamental groups containing parabolic transformations
were constructed. Parabolic transformations were shown to be very much like hyperbolic
transformations for questions concerning proper actions of a grolipimf?] (and[1] for
that matter). But we see here that for questions concerning CTCs, the difference between
hyperbolic and parabolic transformations is tremendous.

We will also be keenly interested in surface groups, groups isomorphic to the fundamental
group of a closed surface. As showrdr8] these groups do not act properly discontinuously
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on E. However, Mes$8] showed that surface groups can act properly discontinuously on
some subseX C E.
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