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Abstract

We consider the region of closed time-like curves (CTCs) in three-dimensional flat Lorentz
space–times. The interest in this global geometrical feature goes beyond the purely mathematical
one. Such space–times are lower-dimensional toy models of sourceless Einstein gravity or cosmol-
ogy. In three dimensions all such space–times are known: they are quotients of Minkowski space
by a suitable group of Poincaré isometries. The presence of CTCs would indicate the possibility of
“time machines”, a region of space–time where an object can travel along in time and revisit the same
event. Such space–times also provide a testbed for the chronology protection conjecture, which sug-
gests that quantum back reaction would eliminate CTCs. In particular, our interest in this note will be
to find the set free of CTCs forE/〈γ〉, whereE is modeled on Minkowski space andγ is a Poincaré
transformation. We describe the set free of CTCs whereγ is hyperbolic, parabolic, and elliptic.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let E denote three-dimensionalMinkowski space. This is an affine space with transla-
tions inR

2,1, the vector space equipped with the standard indefinite bilinear formB(·, ·)
of signature(2, 1). (SinceE is flat and geodesically complete, the reader may identifyE

with its set of translations without any major difficulties arising.) We look at flat Lorentz
manifolds, which are quotients of an open subsetX of E by a groupΓ of affine Lorentzian
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isometries that acts properly discontinuously on that subset. Such manifoldsX/Γ inherit a
local causal structure fromE.

Let X/Γ be a flat Lorentz manifold. Atime-likevector is a vectorv ∈ R
2,1 such that

B(v, v) < 0. A time-like curvein X/Γ is a C1 pathc : [0, 1] → X/Γ whose tangent
vectors are all time-like; we say thatc is closedif c(0) = c(1). The purpose of this note is
to lay the groundwork for understanding regions free of closed time-like curves (CTCs) in
a Lorentz space–time.

TheCTC regionof a space–time is the set of all points which lie on some CTC and the
CTC-free regionis the complement of this space. SupposeΓ acts properly discontinuously
on some subsetX ⊂ E. Denote by [p] the image ofp in X/Γ under projection. We wish
to determine the set of allp such that [p] lies in the CTC region ofX/Γ .

We first note the following basic lemma.

Lemma 1.1. LetΓ andX ⊂ E be as above. Letp ∈ X be a point such thatγ(p) − p is a
time-like vector, for someγ ∈ Γ , and the line segment starting at p and ending atγ(p) lies
entirely in X. Then[p] ∈ X/Γ lies on a smooth CTC.

This lemma is well known, but we provide a proof for completeness.

Proof. Let c : R → E be a continuous and piecewise linear path through each pointγn(p),
defined by the following:

c(t) = γ [t](p) + (t − [t])(γ [t]+1(p) − γ [t](p)),

where [t] denotes the largest integer not greater thant. The pathc is of the classC∞ except
at the integers. We describe a new path neart = 0 and then apply the same procedure at all
integer values oft. For some smallε > 0, define

c̃(t) = d0,ε(t)(p + t(p − γ−1(p)) + u0,ε(t)(p + t(γ(p) − p)),

whered0,ε(t) andu0,ε(t) areC∞ functions such that

d0,ε(t) =
{

1 for t ≤ 0,

0 for t ≥ ε,
and u0,ε(t) =

{
0 for t ≤ 0,

1 for t ≥ ε.

The path̃c is C∞ and agrees with the pathc for t ≤ 0 andt ≥ ε. The path̃c can be extended
to aC∞ path through each pointγn(p). We can assume thatγn−1(p) − γn(n) is a future
pointing time-like vector. The sum of two future pointing time-like vectors is another future
pointing time-like vector. Therefore,c̃ is a smooth time-like curve which goes through each
pointγn(p). �

Corollary 1.2. SupposeΓ acts properly discontinuously onE. Then[p] is in the CTC
region ofE/Γ if and only ifγ(p) − p is time-like, for someγ ∈ Γ .

The vectorγ(p) − p is called thedisplacement vectorfor p.
In this note we will mainly considerΓ = 〈γ〉, whereγ is an affine Lorentzian isometry,

that is, an element of thePoincaré group. Note that the cyclic groupΓ acts properly
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discontinuously on all ofE if and only if γ admits no fixed points. We will examine both
the fixed point case—in other words, whenγ is an element of theLorentz group—and the
fixed point-free case.

2. Isometries

Let Isom(E) denote the group of affine isometries ofE, that is the Poincaré group. Choos-
ing an origin0, we may write the action of an isometryγ ∈ Isom(E) as

γ(p) = 0 + g(p − 0) + v, (1)

whereg ∈ O(2, 1) is called itslinear part andv ∈ R
2,1 is called itstranslational part.

(Typically, we shall omit0, which can be taken to be the point whose coordinates are all
zero.)

Denote the Lorentzian inner product on the vector space of translationsR
2,1 by B(·, ·):

B






x

y

z


 ,




u

v

w




 = xu+ yv − zw.

It is invariant under the action due to any element of O(2, 1).
The union of the sets of time-like vectors and non-zero light-like vectors divides into two

connected components, one of which is calledfuture directedand one calledpast directed.
It is common to choose the connected component where the third coordinate is positive
to be the future direction. Such a choice is called atime-orientationon E. We say that a
setX ⊂ E is future (resp. past) completeif given a pointp ∈ X every future (resp. past)
directed ray starting atp remains inX.

We will restrict our examination to the identity componentG ⊂ Isom(E), consisting
of orientation and time-orientation preserving isometries. This is a subgroup of SO(2, 1)

which has index 2.
The conjugacy classes of elements ofGare identified by their trace. Further, a non-identity

elementg ∈ G is called:

• hyperbolicif tr (g) > 3,
• parabolic if tr (g) = 3 and
• elliptic if tr (g) < 3.

We say that an affine transformation ishyperbolic, parabolic, or elliptic if its linear
part is hyperbolic, parabolic, or elliptic, respectively. Conjugacy classes of hyperbolic and
parabolic affine transformations are determined by the trace of the linear part and what we
will call the signed Lorentzian length. This invariant, due to Margulis[6,7], measures the
Lorentzian length of the closed geodesic determined by the isometry; more on this in the
following section.

For a given transformationγ, E splits into three regions, according to the causal character
of the displacement vectorγ(p) − p, for p ∈ E:
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• thetime-like regionfor the action ofγ onE:

T(γ) = {p ∈ E|B(γ(p) − p, γ(p) − p) < 0};
• the light-like regionfor the action ofγ:

L(γ) = {p ∈ E|B(γ(p) − p, γ(p) − p) = 0};
• thespace-like regionfor γ:

S(γ) = {p ∈ E|B(γ(p) − p, γ(p) − p) > 0}.

SupposeΓ ⊂ Isom(E) acts properly discontinuously on the maximal setX ⊂ E; we
denote byT(Γ) the set of pointsp ∈ X such that [p] is in the CTC region ofX/Γ . If Γ acts
freely and properly discontinuously onE, then

T (Γ ) =
⋃
γ∈Γ

T(γ).

The region whose quotient is free of CTCs is denoted byF(Γ). If Γ acts freely and properly
discontinuously onE, then

F (Γ ) =
⋂
γ∈Γ

(S(γ) ∪ L(γ)).

2.1. Conjugation

An isometry may be conjugated by an element of GL(3, R), in order to facilitate explicit
calculations. For instance, given a hyperbolicg ∈ G, there existsh ∈ GL(3, R) such that
hgh−1 is a diagonal matrix.

Conjugation of an isometry by a linear map corresponds to a change of basis inE.
Conjugation by a pure translation corresponds to changing the origin.

Conjugation of an isometry by elements of the Poincaré group is more restrictive but has
real physical meaning. Conjugation by an element of SO(2, 1) corresponds to changing to an
observer in a different inertial reference frame. Conjugation by a translation corresponds to
changing to an observer at a different space–time location. Theprinciple of special relativity
requires the invariance of physical laws under a change of location and inertial reference.

The relevant invariants in our Lorentzian space–times, such as the Lorentzian inner prod-
uct and signed Lorentzian length, are invariant after conjugation by an element of the
Poincaré group. In particular, even though the form of(1) depends on the choice of origin,
the signed Lorentzian length does not depend on the choice of origin.

3. Hyperbolic transformations

Let γ ∈ Isom(E) be a hyperbolic transformation with linear partg. Theng admits
three eigenvectors,x−(g), x0(g), x+(g) with eigenvaluesλ(g) < 1 < λ(g)−1, respec-
tively. The eigenvectorsx±(g) are null and can be chosen so that they are future directed
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andB(x−(g), x+(g)) = −1. Then we may choosex0(g) to be the unique 1-eigenvector
satisfying:

• it is unit-space-like, i.e.B(x0(g), x0(g)) = 1;
• {x−(g), x+(g), x0(g)} is a right-handed basis forR2,1.

Thesigned Lorentzian lengthof γ is

α(γ) = B(γ(p) − p, x0(g)),

wherep ∈ E is arbitrary (i.e.α(γ) does not depend on the choice ofp). Every hyperbolic
transformationγ gives rise to a unique invariant lineCγ ⊂ E, which is parallel tox0(g). If
q ∈ Cγ :

γ(q) = q + α(γ)x0(g),

thusα(γ) measures the signed Lorentzian length ofCγ/〈γ〉. The curveCγ/〈γ〉 is called
theunique closed geodesicin E/〈γ〉, that isCγ/〈γ〉 is the image of a simple closed curve
c[0, 1] → E such thatc′(t) is constant on [0, 1], wherec′(0) is thought of as a right-hand
limit and c′(1) is thought of as a left-hand limit.

As trace identifies conjugacy classes of elements in SO(2, 1), the trace of the linear part
and the value ofα identify conjugacy classes of hyperbolic isometries in Isom(E). Conjugate
γ by the change of basis matrix [x−(g)x+(g)x0(g)] (an element of GL(3, R), not SO(2, 1)),
so that its linear part is diagonal. Next, conjugate by an appropriate translation, so that the
origin lies onCγ .

Write the pointp ∈ E in terms of the new basis and origin:

p = p−x−(g) + p+x+(g) + p0x0(g).

We may write the conjugate transformation as follows:


p−
p+
p0


 �→




λ(g) 0 0

0 λ(g)−1 0

0 0 1






p−
p+
p0


+




0

0

α(γ)


 =




λ(g)p−
λ(g)−1p+
p0 + α(γ)


 .

The causal character of the displacement vector is determined by the following calculation:

B(γ(p)−p, γ(p)−p) = 2B(x+(g), x−(g))(λ(g)−1)(λ(g)−1 − 1)p−p+ + α(γ)2.

Thus points inT(γ), i.e. points projected onto CTCs, satisfy the following inequality:

p−p+ <
−α(γ)2

2(1 − λ(g))(λ(g)−1 − 1)
. (2)

Observe that the right-hand side is negative.

3.1. Hyperbolic transformations with fixed points

Suppose thatγ admits a fixed point; equivalently,Cγ is pointwise fixed andα(γ) = 0. Set,

Bγ = {p−x−(γ) + p+x+(γ) + p0x0(γ)|p−p+ < 0}.



V. Charette et al. / Journal of Geometry and Physics 46 (2003) 394–408 399

Fig. 1. A cross-section for hyperbolic transformations.

Thenp solves(2) if and only ifp ∈ Bγ . This region divides into two connected components,
bounded byL(γ), which in turn is composed of the so-calledunstable/stableplanesE±(γ):
these are the planes containingCγ and parallel tox±(g).

The closure of the two remaining components ofE:

G+
γ = {p−x−(γ) + p+x+(γ) + p0x0(γ)|p−, p+ ≥ 0},
G−

γ = {p−x−(γ) + p+x+(γ) + p0x0(γ)|p−, p+ ≤ 0},

formF(γ), seeFig. 1. The setG+
γ is future complete.

Note thatF(γ) = F(γn), for everyn, sincex±(γn) = x±(γ). Thus we have the following
proposition.

Proposition 3.1. Letγ be a hyperbolic transformation with fixed points. Then

F(〈γ〉) = G+
γ ∪ G−

γ \ Cγ,

and

T(〈γ〉) = Bγ .

The interior ofG+
γ is a maximal connected openγ-invariant CTC-free region ofE on

which〈γ〉 acts properly discontinuously. The quotientG+
γ /〈γ〉 is called Misner space and

is a Lorentz space–time which is future complete and diffeomorphic toR
2 × S1.

The interior ofG−
γ yields an analogous, past complete space–time.

3.2. Hyperbolic transformations without fixed points

DefineBγ , G+
γ , G−

γ as above. Solutions to(2) now consist of two components which are
strictly contained inBγ . They are bounded by hyperbolic sheets formingL(γ), which are
asymptotic to the planesE±(γ).
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Theorem 3.2. Letγ ∈ Isom(E) be a hyperbolic isometry without fixed points; then

T (〈γ〉) = Bγ ,

and the CTC region ofE/〈γ〉 isBγ/〈γ〉. Furthermore,

F (〈γ〉) = G+
γ ∪ G−

γ .

The regionsG+
γ andG−

γ are future complete and past complete, respectively. All closed
curves inG+

γ /〈γ〉 andG−
γ /〈γ〉 are space-like.

Proof. Note that the linear part ofγn is gn so λ(gn) = (λ(g))n, but α(γn) = nα(γ).
Consider the right-hand side of(2). We find

lim
n→∞

−α(γn)2

2(1 − λ(gn))(λ(gn)−1 − 1)
= 0.

Therefore, the hyperbolic sheetsL(γn) approachE±(γ), sinceE±(γn) = E±(γ). �

In contrast to hyperbolic transformations with fixed points, the maximal connected open
subset ofE on which〈γ〉 acts properly discontinuously is all ofE. The quotientE/〈γ〉 is a
Lorentz space–time which is future complete, past complete, and diffeomorphic toR

2×S1,
which Grant[5] identified as representing the complement of two straight moving cosmic
strings which do not intersect.

Now that we understand the CTC regions for a group generated by a single hyperbolic
transformation, we can start to look at more complicated groups. Here is an interesting
example, where the CTC region consists of all ofE.

Example 2.3 (F(Γ) = ∅). Suppose thatγ1 andγ2 are hyperbolic transformations such
that:

• the invariant linesCγ1, Cγ2 are distinct,
• the linear parts admit the same eigenvectors, and
• the groupΓ = 〈γ1, γ2〉 acts freely and properly discontinuously onE.

Note that there are such groups. One such example is the group generated by the trans-
formations

γ1(x) =




1 0 0

0
3

2
−

√
5

2

0 −
√

5

2

3

2


 x +




1

0

0


 and

γ2(x) =




1 0 0

0
7

2
−3

√
5

2

0 −3
√

5

2

7

2




x +




2
1√
5

1


 .
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Fig. 2. A cross-section ofBγ1; C = Cγ1.

These transformations admit distinct invariant lines which are both parallel to the vector
 1

0

0


 .

(In fact,E/〈γ1, γ2〉 is a 3-torus. There is a normal subgroup∼= Z
2 of pure translations and

the linear parts preserve thisZ
2-lattice.)

To studyT(Γ), it is enough to look at a single cross-section parallel to

〈x−(g1), x+(g1)〉 = 〈x−(g2), x+(g2)〉.

Fig. 3. A cross-section ofBγ2 andBγ1; C1 = Cγ2.
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Fig. 4. A cross-section ofB
γi

1γ2γ−i
1

, 0 ≤ i ≤ 3, andBγ1; Ci = C
γi−1

1 γ2γ−i+1
1

.

Conjugate invariant lines are obtained as follows:

C
γiγjγ

−1
i

= γiCγj .

Suppose thatq ∈ G+
γ1

∪ G+
γ2

. The point representing the invariant lineCγn
1 γ2γ−n

1
approaches

the asymptote representing eitherE+(γ1) orE−(γ1) as seen inFigs. 2–4. So in our example,
every pointq lies inBγn

1 γ2γ−n
1

for a large enoughn. The other cases are treated in the same
manner, showing that everyq lies inBγ , for someγ ∈ Γ .

Thus, the CTC region ofE/Γ is the entire space.

4. Parabolic transformations

In the linear groupG, all parabolic transformations are conjugate to each other. The
conjugacy classes of affine parabolic transformations in Isom(E) are described in[1]. In
particular, the invariantα, which is defined for hyperbolic transformations only, can be
generalized to parabolic transformations.

4.1. Parabolic transformations with fixed points

Let ρ ∈ Isom(E) be a parabolic isometry with a fixed point. Equivalently,ρ admits a
pointwise fixed light-like line, which is parallel to the unique (fixed) eigendirection ofρ’s
linear part.

For simplicity, identifyρ with ρ’s linear part inG—this may be achieved by choosing
an origin0 in the fixed point set ofρ. (We will omit 0 in the rest of this discussion.) Thusρ

admits a fixed eigendirection of light-like vectors. Choose one such vector which is future
pointing and call itx0(ρ).
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Let x0(ρ)⊥ denote its Lorentz-orthogonal plane inR
2,1, that is, the set of vectors whose

Lorentz inner product withx0(ρ) vanishes. Note thatx0(ρ)⊥ is tangent to the light cone and
containsRx0(ρ), the line spanned byx0(ρ). Every vector inx0(ρ)⊥ is either light-like (if
and only if it is parallel tox0(ρ)) or space-like; in particular,x0(ρ)⊥ contains no time-like
vectors.

Similarly, to the hyperbolic case, letx1, x2 be a pair of vectors such that:

• x1 lies inx0(ρ)⊥ and is unit-space-like;
• x2 is light-like, future pointing and Lorentz-orthogonal tox1, but not parallel tox0(ρ);
• {x0(ρ), x1, x2} is a positively oriented basis.

Then relative to this basis, every power ofρ can be written as an upper-triangular matrix
with 1’s on the diagonal:

ρn =




1 an bn

0 1 cn

0 0 1


 .

In particular, for everyp ∈ E each displacement vectorρn(p) − p lies in x0(ρ)⊥. (More
generally, ifγ ∈ Isom(E) admits fixed points, then the displacement vectors lie inx0(ρ)⊥.
We will use this fact again in the elliptic case.) Thus the displacement vector is never
time-like. The displacement vector is light-like if and only ifp ∈ x0(ρ)⊥ and, of course,
vanishes if and only ifp is fixed byρ.

Thus,

S(ρ) = S(ρn) = E − x0(ρ)⊥, L(ρ) = L(ρn) = x0(ρ)⊥.

We define

Eρ = E − Rx0(ρ),

and we have shown the following proposition.

Proposition 4.1. Letρ be a parabolic isometry with fixed points. Then

F(〈ρ〉) = Eρ and T(〈γ〉) = ∅.

That is, the CTC region ofEρ/〈ρ〉 is empty. The space-like regionS(ρ) divides into two
components separated by the light-like regionL(ρ) = x0(ρ)⊥ − Rx0(ρ).

4.2. Parabolic transformations with no fixed points

The situation changes dramatically for parabolic transformations without fixed points.
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Recall that all linear parabolics are conjugate to each other. Chooseρ such that

{x0(ρ), x1, x2} =







0

− 1√
2

1√
2




,




1

0

0


 ,




0

1√
2

1√
2







.

Choose an origin0 and denote the coordinates of a pointp in the {x0(ρ), x1, x2} basis as
follows:

p =




p0

p1

p2


 .

We may further conjugate the parabolic isometry so that its translational part is parallel to
x2; then the transformation may be written as

ρτ(p) =




1
√

2 1

0 1
√

2

0 0 1






p0

p1

p2


+




0

0

τ


 . (3)

The inner product in this basis is given by

B(p, q) = −p0q2 + p1q1 − p2q0,

whereq0, q1, q2 are the coordinates ofq in the new basis. A pointp is in T(ρτ) if

p2
2 − τ(

√
2p1 + p2) < 0.

More explicitly,

p1 >
p2

2 − τp2√
2τ

if τ > 0, p1 <
p2

2 − τp2√
2τ

if τ < 0. (4)

We see thatL(ρτ) is a parabolic sheet boundingT(ρτ). Let us examine the case where
τ > 0. Suppose thatp ∈ L(ρτ) ∪ T(ρτ). The set of future pointing, non-space-like vectors
is convex. Therefore,

ρn+1
τ (p) − p = (ρn+1

τ (p) − ρτ(p)) + (ρτ(p) − p) = g(ρn
τ (p) − p) + (ρτ(p) − p)

is a future pointing time-like vector, since each term is either a future pointing light-like
vector or a future pointing time-like vector and all vectors are not parallel.

The same statement holds whenτ < 0, substituting the term “past” for “future”.

Lemma 4.2. Let τ �= 0; thenT(ρn
τ ) ⊂ T(ρn+1

τ ) for all n ≥ 1.
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We will now show by direct calculation that the parabolic sheetL(ρn
τ ) is described by

the equation

p1 = p2
2 − τp2√

2τ
− φ(n)τ, (5)

whereφ(n) increases as fast asn2. Notice that this sheet is just a translate ofL(ρτ) in the
x1 direction by the amount−φ(n)τ.

We can show the following by induction:

ρn
τ (p) =




n
√

2p1 + n2p2 + τ
∑n−1

i=1 i2

n
√

2p2 + √
2τ
∑n−1

i=1 i

nτ


 . (6)

We get an equation describingL(ρn
τ ) by solving

B(ρn
τ (p) − p, ρn

τ (p) − p) = 0,

and we obtain

n2
√

2τp1 = n2p2
2 + nτp2

(
−n2 + 2

n−1∑
i=1

i

)
− τ2


n

n−1∑
i=1

i2 −
(

n−1∑
i=1

i

)2 .

We note that−n2+2
∑n−1

i=1 i = −n and that 6
∑n−1

i=1 i2 = n(n−1)(2n−1), so the following
holds:

p1 = p2
2 − τp2√

2τ
− τ(n2 − 1)

12
√

2
.

Theorem 4.3. Letρ ∈ Isom(E) be a parabolic isometry without fixed points. Then

T(〈γ〉) = E,

and the CTC region ofE/〈γ〉 is the entire space.

Example 4.4. Suppose{gn}n≥0 ⊂ G is a sequence of hyperbolic isometries with a common
fixed point0, converging to a parabolic element inG. This happens, for instance, by letting
gn = hngh−n, whereg is hyperbolic andh is an arbitrary element ofG. Then,

T(gn) → T(ρ) as gn → ρ.

Indeed, asgn → ρ, the stable and unstable planes ofgn both approach the planex0(ρ)⊥.
(Recall thatx0(ρ)⊥ is tangent to the light cone at the origin and containsRx0(ρ).) Thus
T(γn) approaches the empty set.

Now consider a sequence of hyperbolic transformations{γn}n≥0 approaching a parabolic
transformationρ, without fixed points. The regionsT(γn) still approach the empty set.
However,T(ρ) = E.
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5. Elliptic transformations

In G, all elliptic elements are conjugate to an element of the form

ψθ =




cosθ sinθ 0

− sinθ cosθ 0

0 1


 . (7)

The signed Lorentzian length invariantα cannot be generalized in any coherent manner to
elliptic elements. We will first consider elliptic transformations with fixed points and then
without fixed points.

5.1. Elliptic transformations with fixed points

After choosing an origin0 in the fixed point set, we let

p =




x

y

z




so that the transformation can be written asψθ. A fixed eigenvector for this transformation
is

x0(ψθ) =




0

0

1


 ,

and the fixed point set forψθ consists of the lineRx0(ψθ).
If θ is a rational multiple of 2π, then the group〈ψθ〉 acts freely and properly discontinu-

ously on the complement of its fixed point set

Eψθ
= E − Rx0(ψθ).

Recall that sincex0(ψθ) is fixed byψθ, every displacement vector lies in the Lorentz-
orthogonal plane ofx0(ψθ). This is thexy-plane, which is space-like. Thus we have the
following proposition.

Proposition 5.1. Supposeψ is an elliptic isometry with fixed points, and thatψ is a rotation
of a rational multiple of2π about its line of fixed points. Then,

F(〈ψθ〉) = Eψθ
and T(〈ψθ〉) = ∅.

That is, the CTC region ofEψθ
/〈ψθ〉 is empty.

Spaces of the typeEψθ
/〈ψθ〉 can be identified with special cases of space–times that

represent (spinless) particles in (2+1)-dimensional gravity. Such spaces have been described
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by Deser et al.[3] (see also[9] and references cited there). The direct metric product of
such a space with a space-like line is known as a cosmic string.

5.2. Elliptic transformations without fixed points

As in the parabolic case, the situation changes dramatically for elliptic transformations
without fixed points. Every elliptic transformation is conjugate to a transformation

ψθ,t(p) =




cosθ sinθ 0

− sinθ cosθ 0

0 1






x

y

z


+




0

0

t


 , (8)

which we will write asψ. The group〈ψ〉 acts properly discontinuously on all ofE.

Theorem 5.2. Letψ ∈ Isom(E) be an elliptic isometry without fixed points. Then,

T(〈ψ〉) = E,

and the CTC region ofE/〈ψ〉 is the entire space.

Proof. Note that

ψk =




coskθ sinkθ 0

− sinkθ coskθ 0

0 1






x

y

z


+




0

0

kt


 ,

so that the length (equivalent to the underlying topology) of the projection ofψ(p)−p onto
the(x, y)-plane is bounded by 2‖x2 + y2‖. However, the projection ofψ(p) − p onto the
z-axis is unbounded ask → ∞. Thus, for a sufficiently large powerk, depending on the
distance fromp to thez-axis, the vectorψk(p) − p is time-like. �

6. Future directions (pun intended)

In a future note, we will look for CTCs inX/Γ , whereX ⊂ E andΓ is more complicated.
Some examples are given below.

For the caseX = E and freeΓ , we call E/Γ a Margulis space–time. Theorem 4.3
has an interesting and immediate consequence for Margulis space–times. In[2], Margulis
space–times with non-cyclic free fundamental groups containing parabolic transformations
were constructed. Parabolic transformations were shown to be very much like hyperbolic
transformations for questions concerning proper actions of a group onE in [2] (and[1] for
that matter). But we see here that for questions concerning CTCs, the difference between
hyperbolic and parabolic transformations is tremendous.

We will also be keenly interested in surface groups, groups isomorphic to the fundamental
group of a closed surface. As shown in[4,8] these groups do not act properly discontinuously
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on E. However, Mess[8] showed that surface groups can act properly discontinuously on
some subsetX ⊂ E.
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